
International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 650
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Test Data Generation Using Intelligent Geno-
Neuro Technique

Obe O.O.

Abstract— Software testing is an integral part in software development which requires the use of test data to test software. During testing, the most

difficult problem is the generation of test data. A test data generator is a tool which assists programmers or testers in generation of test data for a pro-

gram which will thus reduce the time and cost of software testing. Some techniques have been proposed to develop the test data generator. Using geno-

neuro technique, more rigorous test data will be generated. This approach will make use of the control flow graph to guide the test data generation. Con-

trol flow graph will be used to analyse the necessary paths in the program. The neural network will be trained with the genetic algorithm for the genera-

tion of test data. This approach (geno-neuro technique) has been shown to enhance the generation of more rigorous test data.

Index Terms-genetic algorithms,geno-neuro,machine learning,neural networks,software engineering,software teting,test data,chromosones

—————————— ——————————

1 INTRODUCTION
Software bugs will almost always exist in any software

module with moderate size: not because programmers are careless or

irresponsible, but because the complexity of software is generally

intractable and humans have only limited ability to manage complex-

ity. Discovering the design defect in software is equally difficult for

the same reason of complexity. This is so because software and any

digital systems are not continuous, testing boundary values are not

sufficient to guarantee correctness. Regardless of the limitations,

testing is an integral part in software development. It is broadly dep-

loyed in every phase in the software development cycle.

Studies show that software testing already consumes up to

50% of software development costs. One of the most difficult and

expensive technical problems of software testing is the actual gen-

eration of test data values. Automation is a good way to minimize

the cost and time in software development. If software testing

process could be automated, the cost of developing software would

be reduced significantly. Of the problems involved in testing soft-

ware; one of them is the problem of generating test data. A test data

generator is a tool which assists programmer in generation of test

data for a program.

2 BACKGROUND AND RELATED WORK
2.1 Review Stage

Test data generation is an important part of software testing

which includes the process of identifying a set of data for testing the

adequacy of software application. Test data generation involves iden-

tifying program input data which satisfy selected testing criterion. It

may be the actual data that has been taken from previous operations

or artificial data created for this purpose. Given a testing require-

ment, such as an input that will cause execution of a particular

statement, test-data generation techniques attempt to find a program

input that will satisfy the testing requirement.

Genetic algorithm is an optimization heuristic that mimics

natural processes, such as selection and mutation in natural evolu-

tion, to evolve solutions to problems whose solution spaces are im-

practical for traditional search techniques, such branch-and-bound or

optimization technique and linear programming. This algorithm en-

codes a potential solution to a specific problem on a simple chromo-

some-like data structure and applies recombination operators to these

structures so as to preserve critical information. Genetic algorithm

will be used to search for test cases that satisfy desired testing re-

quirements.

In machine learning and cognitive science, Artificial neural

network (ANN) is a family of models inspired by biological neural

networks and are used to estimate or approximate functions that can

depend on a large number of inputs and are generally unknown.

Neural network requires training which can either use supervised or

unsupervised learning method.

Geno-neuro technique is a hybrid technique which is based

on Artificial Neural network and genetic algorithm. In geno-neuro

technique, the neural network will be trained with the genetic algo-

rithm which is an optimization technique used in generating data.

Jon E, 1999 released a publication on a survey on automat-

ic test data generation in proceedings of the second conference on

computer science and engineering in Linkoping. His objective is to

describe the basic concepts and notions of test data generation as

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 651
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

well as how test data generator works. He made use of control flow-

graph or flowgraph which is a directed graph G = (N, E, s, e) consist-

ing of a set of nodes N and a set of edges E = {(n, m)|n, m ∈ N} con-

necting the nodes to show the graphical representation of program.

In each flowgraph there are two special nodes: one entry- and one

exit-node, s and e respectively. The nodes represent the statements of

the program and the edges represent flow of control between the

statements. He identified some possible challenges for further re-

search on test data generation. Some of these challenges are Mod-

ules, Assertions, Path selection, Pointers and shapes, Object-oriented

programs.

[17] Also published a journal on test-data generation using genetic

algorithm. His objective is to present a technique that uses genetic

algorithm for automatic test-data generation. He made use of control-

dependence graphs and genetic algorithm to review the automatic

test-data generation. Control-dependence for a program is defined in

terms of the program’s control-flow graph and the post dominance

relation that exists among the nodes in the control-flow graph. In the

control-flow graph, nodes represent statements, and edges represent

the flow of control between statements. He made use of genetic algo-

rithm to search for test data. He developed an algorithm for automat-

ic generation of test data for a given program. This algorithm is

called GenerateData This algorithm (GenerateData) is implemented

and has been implemented on only six programs. Although the re-

sults are promising, more experimentation must be done before any

conclusive statements can be made.

[13] Made a research on automated test data generation for

programs with procedure. His objective is to present an approach for

automated test data generation for programs with procedures. He

made use of chaining approach in the research. The basic idea of

chaining approach is to identify a sequence of nodes to be executed

prior to execution of selected node. The chaining approach uses the

data dependency concepts to identify such a sequence. The approach

starts by executing a program for an arbitrary program input x. Dur-

ing program execution for each executed branch (p,q), the search

process decides whether the execution should continue through this

branch or whether an alternative branch should be taken. If an unde-

sirable execution flow at the current branch (p,q) is observed, then a

real-valued function is associated with this branch. Function minimi-

zation search algorithms are used to find automatically new input

that will change the flow execution at this branch. Event sequences

are used to guide the execution of the program during the search

process. He performed an experiment to compare the random test

data generation, path-oriented test data generation and the chaining

approach method of test data generation. The results of the experi-

ment indicate that the chaining approach may increase the chances of

generating test data.

Chayanika et al, 2013 wrote a journal on a survey of soft-

ware testing techniques using genetic algorithm. The objective is to

present a survey of genetic algorithm approach for addressing the

various issues encountered during software testing. Genetic algo-

rithm approach is used to survey test data generation. Another test

generation approach proposed by P.R Srivastava is based on path

coverage testing. The test data is generated for Resource Request

algorithm using Ant Colony Optimization algorithm (ACO) and GA.

The ACO algorithm is inspired from behaviour of real ants where

ants find closest possible route to a food source or destination. The

ants generate chemical substance called pheromones which helps

ants to follow the path. The pheromone content increases as more

ants follow the trail. The possible paths of CFG are generated having

maximum number of nodes. Using ACO, optimized path ensuring

safety sequence in resource request algorithm is generated covering

all edges of CFG. With GA, suitable test data set is generated which

covers the need for each process. The backbone of genetic process is

the fitness function which counts number of times a particular data

enters and continues the resource algorithm. Higher the value of

count, higher is chances avoiding a deadlock. The test data with

higher values of count is taken and generic crossover and mutation is

applied to yield better results. Simultaneously, poor test data is re-

moved each time. The experimental results shows that success rate of

ACO are much better than GA. In weighted CFG approach, experi-

ments were done on small examples and need to be done on larger

commercial examples. Moreover, method can be further improved.

[1] Also wrote a report on dynamic test case generation us-

ing neural networks. The objective is to explore the use of neural

networks to find test cases that would be able to execute specific

portion of the program. He made use of control dependence which is

defined in terms of the program’s control flow graph and the post-

dominance relation that exists among the nodes in the control-flow

graph. In a control-flow graph, nodes represent statements, and edges

represent the flow of control between statements - an edge (X, Y) in

a control-flow graph means that program control can flow from X to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 652
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Y . To facilitate analysis, a control-flow graph is augmented with

unique entry and exit nodes. Given a code, static analysis can easily

provide the control dependence graph. He mde use artificial neural

network approach in dynamic test data generation. It is used to com-

pute a function using example inputs and outputs. Neural networks

have been used for a variety of applications, including pattern recog-

nition, classification, and image understanding. Neural network can

be trained to perform a particular function by adjusting the values of

the connections (weights) between elements. Commonly neural net-

works are adjusted, or trained, so that a particular input leads to a

specific target output. The system can also be trained using a whole

set (batch) of inputs, reducing the total error. He developed a triangle

classification program which was instrumented and executed with

various random values and tried to model the branch functions using

radial basis neural networks in matlab. The input values were real

values constrained between 0 and 1, since this network is designed

for values between 0 and 1.

2.2 PROPOSED TECHNIQUE
The proposed algorithm is geno-neuro technique has been devised to

generate more rigorous test data. Since genetic algorithm is an opti-

mization technique, it will be sufficient to train the neural network to

generate rigorous test data.

2.3 PROPOSED GENO-NEURO TECHNIQUE
The proposed test data generator technique (geno-neuro tech-

nique) will consist of two parts which are the evolution part and the

learning part:

i. The evolving part will use genetic algorithm to search for

better test data

ii. The learning part whereby the artificial neural network will

be trained using genetic algorithm and the test data gener-

ated by the genetic algorithm.

The three sample programs that the test data generator system is

developed for are:

i. CGPA calculator program

ii. Triangle classification program

iii. Quadratic equation roots classification program.

Figure 1: Architecture of geno-neuro test data generator

The geno-neuro test data generator system architecture follows

three major steps. These are:

i. Construction of program control flow graph

ii. Selection of path

iii. Generating test data.

To generate test data for any program, the program must be ana-

lysed. In this research work, the programs are analysed manually

using the control flow graph. With the control flow graph, all the

feasible paths in the programs will be identified.

The control flow graph for the quadratic equation root classification

program is given below:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 653
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

From the analysis made through the control flow graph, the

flow of the program and the feasible paths of the programs will be

identified easily. From the control flow graph above, the start node is

1 and the exit node is 21. This shows that any input to the program

would have taken a feasible path if and only if it executes from the

start node to the exit node.

For the quadratic program, it can be deduced from its control flow

graph that its feasible paths are:

i. 1-2-3-4-5-6-7-8-9-21 (EQUAL ROOTS)

ii. 1-2-3-4-5-6-7-11-15-21 (COMPLEX ROOTS)

iii. 1-2-3-4-5-6-7-11-12-21 (REAL ROOTS)

iv. 1-2-3-4-5-6-7-19-21 (INVALID COEFFICIENTS)

Genetic algorithm is used twice in the development of the geno-

neuro test data generator system. Genetic algorithm was first used to

tune the data generated through the random numbers. These data are

then used to train the neural network. The neural network makes use

of a three layer network which includes an input layer, a hidden layer

and an output layer.

At the input layer, the neural input is received by the network.

This inputs come from the random data that are tuned by the genetic

algorithm. The hidden layer serves as the link between the input

layer and the output layer. Some processes are done on the input

received at the hidden layer. At the output layer, test data will be

generated.

The neural network is trained using the genetic algorithm. The

input data to the neural network will serve as the initial population to

the genetic algorithm. The genetic algorithm will encode the solution

using a chromosome-like structure. For this quadratic program, each

chromosome represents a set of data which is a potential solution

consisting of three genes. These genes represent the coefficients of

the quadratic equation which will be used in identifying the type of

root a quadratic equation has which may be EQUAL ROOTS, REAL

ROOTS, COMPLEX ROOTS or INVALID COEFFICIENTS.

Figure 3: Chromosomes representing potential solutions

In figure 3, Chromosomes 1, 2, 3 and 4 represent potential solutions.

S1, S2, S3 ….. S12 are referred to as the genes which are numerical-

ly encoded. S1, S2 and S3 are the genes for the chromosome 1.

These genes represent a test data. Each gene will have a numeric

value which represents a coefficient of the quadratic equation.

In training the neural network with genetic algorithm, ge-

netic operators is be used to generate test data. Fitness value is very

important as it is useful when the selecting data for the next genera-

tion. Before selecting data or individuals for the next generation,

each of the data will be passed to the program and the path taken will

be noted. The fitness value is determined based on the path that the

test data is to be generated for.

The fitness value will be determined based on the predicate of

the paths. The individuals that follow the same predicate or almost

the same predicate with the path to generate test data for are taken to

be the best fit such that if the path to generate test data for is 1-2-3-4-

5-6-7-8-9-21 then if the data follows path:

Figure 2: Control flow graph of the quadratic program

Chromosome 3

Chromosome 2

Chromosome 1 S1 S2 S3

S4 S5 S6

S7 S8 S9

S10 S11 S12

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 654
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

i. 1-2-3-4-5-6-7-8-9-21, then fitness value = 4

ii. 1-2-3-4-5-6-7-11-12-21, then fitness value = 3

iii. 1-2-3-4-5-6-7-11-15-21, then fitness value = 2

iv. 1-2-3-4-5-6-7-19-21, then fitness value = 1

v. Infeasible path, then fitness value = 0

If the fitness of each individual is fi, the probability pi that a test case

will be selected for the next generation is:

pi = fi / ∑n
j=1fj

where n is the number of test cases in the population.

Also,

∑n
j=1pi = 1

In selecting individuals for the next generation, elitist selection

is used which select the fittest members of each generation will be

selected for the next generation. Genes from parent chromosomes

will be combined to form new offspring chromosome (new popula-

tion). Combining the genes of the parent chromosomes gives a better

chance of generating better test data. In this research work, a two-

point crossover is used for the crossover operation. Mutating the

gene gives a better chance of searching for global optimal solutions

and not getting stuck in local optimal solutions. The gene will be

mutated by replacing the value of the gene with another value. The

genetic algorithm terminates when the maximum number of itera-

tions is reached. During mutation, the neural network will adjust the

weight (test data) to satisfy the specific path to generate the test data

for.

3 EXPERIMENTAL ANALYSIS
In this paper, comparison is made between genetic algorithm and

geno-neuro technique in test data generation. The geno-neuro test

data generator is developed and analysis is made between using

only genetic algorithm technique and using geno-neuro (genetic

algorithm and neural network) technique in developing the test

data generator. The test data generator programs are run for thirty

(30) iterations for each of the techniques and the summation of

the fitness values is recorded for each of the iterations.

The graph below shows the relationship between each iteration

and fitness values and the summation of the fitness values. The

summation of the fitness values is on the y-axis and the iteration

is on the x-axis of the graph. The graph shows that the geno-

neuro technique generates data that are fitter than the data gener-

ated by the genetic algorithm.

Figure 3: Fitness graph for genetic and geno-neuro techniques in test

data generation
From the graph above, geno-neuro technique converges quickly

(after iteration 11) compared to the genetic algorithm (that con-

verges after iteration 26) during test data generation. Thus, geno-

neuro technique enhances the generation of more rigorous test

data during test data generation and can save half of the time of

generation by genetic algorithm.

4 CONCLUSION
This project work has successfully developed a test data

generator for three sample programs using geno-neuro technique.

From the analysis of the results above, it can be concluded that using

geno-neuro technique, the test data generator converges at a higher

rate compared to test data generator that is developed using genetic

algorithm. This is so because the data passed to the neural network

for training are not randomly generated and the neural network is

able to adjust data based on the path to generate test data for. Thus,

geno-neuro technique enhances the generation of more rigorous test

data.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 655
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

REFERENCES
[1] Abhas K., Dynamic Test Case Generation using Neural Networks, Indian

Institute of Technology, Kanpur pp 1-3, 2013.

[2] Bogdan K., Automated Test Data Generation for Programs with Proce-

dures, Departmrnt of computer science, Illinois Institute of Technology, pg

209, 1996.

[3] Bogdan K., Automated Test Data Generation for Programs with Proce-

dures, Departmrnt of computer science, Illinois Institute of Technology, pg

209, 1996.

[4] Bogdan K., Automated Test Data Generation for Programs with Proce-

dures, Departmrnt of computer science, Illinois Institute of Technology, pg

209, 1996.

[5] Christos S., Dimitrious S., Neural Networks,

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,

viewed 12/03/2016.

[6] Christos S., Dimitrious S., Neural Networks,

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,

viewed 12/03/2016.

[7] Christos S., Dimitrious S., Neural Networks,

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,

viewed 12/03/2016.

[8] Christos S., Dimitrious S., Neural Networks,

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,

viewed 12/03/2016.

[9] John E., Wachovia B., Charlotte N., Software testing fundamentals- con-

cepts, roles, and terminology, SUGI 30 proceedings, pg 2, pg 8, 2005.

[10] Jiantao P., Software Testing,

https://users.ece.cmu.edu/~koopman/des_s99/sw_testing/, viewed

12/03/2016.

[11] Kamal Z., Nor A., Mohamed F., Siti N., A Tool for Automated Test Data

Generation (and Execution) Based on Combinatorial Approach, Interna-

tional Journal of Software Engineering and Its Applications, Vol. 1, No 1,

pp 19-33, 2007.

[12] Korel B., Automated Software Test Data Generation, IEEE Transactions on

software engineer. No. 8, Vol. 16, 870-879, 1990.

[13] Korel B., Automated Test Data generation for programs with procedures,

Department of computer science Illinois Institute of Technology Chicago, IL

6061, 209-214, 1996.

[14] Melanie M., Genetic Algorithms: An overview, Santa Fe Institute, pp 1-8,

1995.

[15] Michael N., Using neural network to recognize handwritten digits,

http://neuralnetworksanddeeplearning.com, 12/03/2016, 2016.

[16] Mohammad R., Automatic Software Test Case Generation: An Analytical

Classification Framework, International Journal of Software Engineering

and Its Applications, Vol. 6, No. 4, pp, 2012.

[17] Roy P., Mary J., Robert R., Test-data generation using Genetic algorithm,

Journal of software testing, verification and reliability, pp 1-4, 1999.

[18] Shagodoyin D., Obe O., Arnab R., Dlamani S., Tool support for systematic

test data generation using genetic algorithm, pp 399-402, pp 2006.

[19] Swapan K., Hitesh T., Automated Test Data Generation Using Fuzzy Logic-

Genetic Algorithm Hybridization System for Class Testing Of Object

Oriented Programming, International Journal of Soft Computing and Engi-

neering, Vol. 3, Iss. 5, pp 40-49, 2013.

IJSER

http://www.ijser.org/
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,%20viewed%2012/03/2016
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,%20viewed%2012/03/2016
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,%20viewed%2012/03/2016
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,%20viewed%2012/03/2016
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,%20viewed%2012/03/2016
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,%20viewed%2012/03/2016
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,%20viewed%2012/03/2016
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html,%20viewed%2012/03/2016
https://users.ece.cmu.edu/~koopman/des_s99/sw_testing/

	1 Introduction
	References

